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In an attempt to model the growth and collapse of a vapour bubble in nucleate
boiling this paper investigates the unsteady expansion and contraction of a long
two-dimensional vapour bubble confined between superheated or subcooled parallel
plates whose motion is driven by mass-transfer effects due to evaporation from the
liquid to the vapour and condensation from the vapour to the liquid. It is shown
that in the asymptotic limit of strong surface tension (small capillary number) the
solution consists of two capillary-statics regions (in which the bubble interface is
semicircular at leading order) and two thin films attached to the plates, connected
by appropriate transition regions. This generalization of the steady and isothermal
problem addressed by Bretherton (1961) has a number of interesting physical and
mathematical features. Unlike in Bretherton’s problem, the bubble does not translate
but can change in size. Furthermore, the thin films are neither spatially nor temporally
uniform and may dry out locally, possibly breaking up into disconnected patches of
liquid. Furthermore, there is a complicated nonlinear coupling with a delay character
between the profiles of the thin films and the overall expansion or contraction of the
bubble which means that the velocity with which the bubble expands or contracts is
typically not monotonic. This coupling is investigated for three different combinations
of thermal boundary conditions and two simple initial thin-film profiles. It is found
that when both plates are superheated equally the bubble always expands, and
depending on the details of the initial thin-film profiles, this expansion may either
continue indefinitely or stop in a finite time. When both plates are subcooled equally
the bubble always contracts, and the length of the thin-film region always approaches
zero asymptotically. When one plate is superheated and the other subcooled with
equal magnitude the bubble may either expand or contract initially, but eventually
the bubble always contracts just as in the pure-condensation case.

1. Introduction
In his pioneering paper Bretherton (1961) investigated the steady translation of a

long axisymmetric and isothermal bubble of inviscid gas surrounded by a viscous
liquid and confined within a cylindrical tube. Bretherton analysed the problem in
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the asymptotic limit of strong surface tension (small capillary number) and showed
that the leading-order solution is composed of two ‘capillary-statics’ regions at the
ends of the bubble (in which the bubble interface is semi-spherical) which merge
through ‘transition’ regions into a quiescent thin film of uniform thickness attached
to the tube in the middle of the bubble. Bretherton’s analysis also applies to semi-
infinite bubbles and can be readily adapted to describe two-dimensional bubbles
confined between parallel plates. Although Bretherton himself was apparently un-
aware of their work, his solution has many similarities to that obtained earlier by
Landau & Levich (1942) to describe the thin film adhering to a flat plate withdrawn
from a bath of viscous liquid (the drag-out or dip-coating problem). Bretherton’s
approach has been formalized and extended by Park & Homsy (1984) and subse-
quent authors. As Bretherton himself was aware, his theoretical expression for the
thickness of the thin film underpredicts the experimental results at small capillary
number, precisely where the theory should be most accurate. Bretherton (1961) and
Schwartz, Princen & Kiss (1986) discussed several possible causes for this disagree-
ment, but the first complete explanation was provided by Ratulowski & Chang (1990)
who demonstrated that the presence of surface-tension gradients caused by small
amounts of surface contaminant were capable of accounting for the discrepancy.
The experiments reported by Schwartz et al. (1986) also showed that the thickness
of the thin film is strongly dependent on the length of the bubble (a feature ab-
sent from Bretherton’s solution, which is independent of the bubble’s length) and
subsequently Park (1992) demonstrated that this could also be explained by the
presence of surface contaminant. Surface-tension gradients arising from surface con-
taminant are not a concern for a pure vapour in contact with its pure condensate,
as shall be considered in the present work. However, they may be of consider-
able importance in considering the multicomponent mixtures which often occur in
practice.

The insights gained from studying the solution of Bretherton’s problem are im-
portant in many different physical contexts, including several coating processes, flow
in porous media and even biological systems, and as a result Bretherton’s work has
received considerable attention since its publication. For example, subsequent workers
have sought to incorporate additional physical effects into the basic problem, notably
Wilson (1995) who investigated the effect of a constant axial temperature gradient on
the steady motion of a droplet in a heated tube.

In Bretherton’s problem the mass of the bubble is constant and the steady transla-
tion is driven by an externally imposed pressure gradient. The present paper inves-
tigates the alternative problem of the unsteady expansion and contraction of a long
two-dimensional vapour bubble confined between superheated or subcooled parallel
plates whose motion is driven by mass-transfer effects due to evaporation from the
liquid to the vapour and condensation from the vapour to the liquid. This system has
a number of interesting physical and mathematical features. Since the motion will be,
in general, unsteady, the thin films will not be deposited with constant thicknesses.
Furthermore, the superheating or subcooling of the plates will cause the profiles of
the thin films to evolve after they have been deposited and may cause a film on a
superheated plate to dry out locally at various places and times, possibly breaking
up into disconnected patches of liquid as it dries. Since the mass transfer depends
on the shape of the bubble interface, which itself depends on the past history of the
motion, there is a complicated nonlinear coupling with a delay character between the
profiles of the thin films and the overall expansion and contraction of the bubble.
The present work identifies this coupling and investigates its consequences.
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Our main motivation for studying this problem is to develop a simple model which
captures some of the main features of the growth and collapse of a vapour bubble
attached to a superheated wall in nucleate boiling. It has long been recognized that
typically a thin film of liquid (the microlayer) is left behind on the wall as such a
vapour bubble grows. The subsequent rapid evaporation of the microlayer may supply
the bulk of the vapour to the growing bubble and hence determine the dynamics
of the bubble growth and collapse as well as the local heat transfer. Experimental
measurement of the microlayer have been reported by Jawurek (1969), Cooper &
Lloyd (1969), Voutsinos & Judd (1975) and Koffman & Plesset (1983). Several authors,
notably Cooper (1969), Cooper & Lloyd (1969), Snyder & Robin (1969), Robin &
Snyder (1970), Kotake (1970), Van Ouwerkerk (1971), Guy & Ledwidge (1973), Van
Stralen et al. (1975), Plesset & Prosperetti (1976), Zijl, Ramakers & Van Stralen (1979),
Lee & Nydahl (1989), Tsung-Chang & Bankoff (1990), Guo & El-Genk (1994) and
Mei, Chen & Klausner (1995a,b) have developed approximate and numerical models
of varying sophistication for a vapour bubble incorporating a microlayer. However,
despite considerable theoretical and experimental effort, the understanding of the
process remains incomplete. In the situation considered in the present paper, as often
in nucleate boiling, the mass transfer is dominated by that from and to the thin
films on the superheated or subcooled walls. The present model does not address
the processes of bubble nucleation, periodic bubble growth and collapse, and bubble
departure from the superheated wall, all of which are beyond the scope of the present
work. Dhir (1998) reviews some of the recent developments in understanding boiling
phenomena.

The present problem also has application to a number of other physical situations.
For example, many practical coating processes involve evaporating liquid films which
eventually form solid coatings and which may dry out prematurely causing coating
imperfections. Furthermore, penetration of vapour bubbles into heated capillaries is
of interest in the study of heat-generating porous materials, such as radioactive debris
beds in severe nuclear accident scenarios.

The behaviour of the thin liquid film on the superheated or subcooled plates is
central to the present problem. Reviews of the extensive literature on thin-film flows
have been given recently by Bankoff (1994), Oron, Davis & Bankoff (1997) and Myers
(1998). Of particular interest here is the work on evaporating and condensing films.
Burelbach, Bankoff & Davis (1988) formulated and analysed the general evolution
equation for a thin evaporating or condensing liquid film on a superheated or
subcooled horizontal plate including mass loss, vapour recoil, thermocapillary, surface
tension, gravity and long-range intermolecular attraction effects. Panzarella, Davis
& Bankoff (1997) recently formulated and analysed the corresponding evolution
equation for the thin vapour film which develops between an evaporating liquid
and a superheated plate in horizontal film boiling. Wilson (1993) and Howison et
al. (1997) used a thin-film model to analyse the sometimes-unexpected behaviour
of a drying paint layer consisting of evaporating and non-evaporating components
and found excellent agreement with earlier experimental observations. The local dry-
out of an evaporating liquid film typically involves moving contact lines. Several
workers, including Potash & Wayner (1972), Renk & Wayner (1979a,b), Moosman
& Homsy (1980), Wayner & Schonberg (1992), Wayner (1993) and DasGupta et al.
(1993) have examined the details of the flow in the vicinity of a contact line with
evaporation and condensation. Taking a somewhat different approach, Anderson &
Davis (1995) formulated a macroscopic contact-line condition representing a leading-
order superposition of spreading and evaporative effects which generalizes the model
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used by Ehrhard & Davis (1991) for non-evaporative spreading and used it to study
the spreading of an evaporating droplet on a heated plate.

The structure of the present paper is as follows. In § 2 the model is formulated.
In § 3 the special case of a continuous thin film is considered and the problem in
this case formulated as an integro-delay equation with non-constant delay. In § 4
this delay-equation formulation is used to analyse the stability of a simple solution
corresponding to a bubble expanding at constant velocity. In § 5 the numerical method
used to solve the full problem is described and in §§ 6, 7 and 8 solutions to the model in
the cases when both plates are superheated equally, both plates are subcooled equally
and when one plate is superheated and the other subcooled with equal magnitude,
respectively, are described. Finally, in § 9 the results are summarized and directions
for future work are suggested.

2. Problem formulation
Consider the unsteady expansion and contraction of a long two-dimensional bubble

of inviscid and incompressible vapour with density ρ(V ) surrounded by its condensate,
an incompressible Newtonian liquid with constant dynamic viscosity µ, kinematic
viscosity ν, density ρ, thermal diffusivity κ and thermal conductivity k, and confined
between two infinitely wide parallel horizontal solid plates a distance 2d apart. The
constant surface tension at the interface of the bubble is denoted by σ; the effect
of gravity is neglected. The upper and lower plates are held at (in general different)
uniform temperatures Tu and Tl , respectively, which may be either above or below the
saturation temperature Ts. This superheating or subcooling will cause evaporation
from the liquid to the vapour or condensation from the vapour to the liquid and
hence the bubble will expand or contract in an unsteady manner that needs to be
determined.

In this paper only two-dimensional bubbles symmetric about a vertical axis are
considered and Cartesian coordinates (x, y) are chosen so that the plates are at
y = ±d and only the half of the bubble lying in x > 0 is considered. For simplicity of
presentation in much of the derivation that follows, attention is confined to the lower
quarter of the bubble lying in x > 0, y < 0; the corresponding results for the upper
quarter of the bubble lying in x > 0, y > 0 can then be obtained immediately.

In the asymptotic limit of strong surface tension (small capillary number) it will
be shown that the liquid–vapour interface in x > 0, y < 0 is composed of the three
different regions shown in figure 1, namely a ‘capillary-statics’ region in R(t) < x <
R(t) + S(t), a ‘transition’ region near x = R(t) and a ‘thin-film’ region in 0 < x < R(t)
in which the liquid film may dry out locally, possibly breaking up into disconnected
patches; the functions R = R(t) and S = S(t) will be determined as part of the solution.
Three specific problems shall be addressed as in figure 1: both plates superheated
(specifically, Tu = Tl = Ts + ∆T ), both plates subcooled (Tu = Tl = Ts − ∆T ), and
the lower plate superheated and the upper plate subcooled with equal magnitude
(Tu = Ts − ∆T , Tl = Ts + ∆T ), where ∆T > 0 is the magnitude of the superheating
or subcooling.

The interfacial conditions appropriate at an evaporating or condensing interface
were discussed in detail by Burelbach et al. (1988); here the results relevant to the
present problem are summarized. Note that Burelbach et al. (1988) included several
additional physical effects (namely vapour recoil, thermocapillary and long-range
intermolecular attraction effects) which are omitted from the present description for
simplicity, but could, in principle, also be included. Burelbach et al.’s (1988) ‘one-sided’
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Figure 1. Geometry of the three problems considered: (a) both plates superheated, (b) both plates
subcooled and (c) the lower plate superheated and the upper plate subcooled. Note that in all three
cases the bubble is symmetric about the y-axis and so only the half of the bubble lying in x > 0 is
shown.

model is adopted in which, in the same spirit as the Boussinesq approximation of
thermal convection, one considers the limiting case in which the density, viscosity and
thermal conductivity of the liquid are all much greater than those of the vapour, but
the vapour density in the mass balance at the interface is retained where it multiplies
the (large) vapour velocity.

In order to describe this situation length, velocity, time, pressure and temperature
difference from Ts are non-dimensionalized with d, ν/d, d2/ν, σ/d and ∆T respectively.
The mass flux at the interface of the bubble is scaled with k∆T/dL where L is the
latent heat of vaporization. Note that the scaling of the pressure differs from that
used by Burelbach et al. (1988).

The liquid velocity (u, v) where u = u(x, y, t) and v = v(x, y, t), pressure p = p(x, y, t)
and temperature T = T (x, y, t) satisfy the continuity and Navier–Stokes equations,

ux + vy = 0, (1)

C(ut + uux + vuy) = −px + C(uxx + uyy), (2)

C(vt + uvx + vvy) = −py + C(vxx + vyy), (3)
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where C = µν/σd is the capillary number, and the energy equation

P (Tt + uTx + vTy) = Txx + Tyy, (4)

where P = ν/κ is the Prandtl number and t denotes time.
At the lower plate y = −1 there is the no-slip condition on the liquid velocity,

u = v = 0, and prescribed temperature, T = T0, where T0 = 1 corresponds to
superheating and T0 = −1 to subcooling.

At the lower liquid–vapour interface y = −1 + h(x, t) the local mass-balance
condition yields

−EJ = (ht + uhx − v)(1 + h2
x)
−1/2, (5)

where J = J(x, t) denotes the mass flux at the interface due to evaporation or con-
densation and E = k∆T/ρνL is the non-dimensional evaporation number (the ratio
of the viscous timescale d2/ν to the evaporative timescale ρd2L/k∆T ). Neglecting
the kinetic energy of the vapour particles, the local energy-balance condition yields

J = (Txhx − Ty)(1 + h2
x)
−1/2. (6)

The normal-stress condition yields

−p+ 2C[vy + h2
xux − hx(uy + vx)](1 + h2

x)
−1 = hxx(1 + h2

x)
−3/2 (7)

and the tangential-stress condition yields

(1− h2
x)(uy + vx)− 2hx(ux − vy) = 0. (8)

The constitutive equation relating the interfacial temperature to the interfacial mass
flux, derived from the kinetic theory of non-uniform gases (see, for example, Schrage
1953), has the linearized form

KJ = T , (9)

where the non-dimensional parameter

K =
kT

3/2
s

α̂dL2ρ(V )

(
2πRg
Mw

)1/2

(10)

measures the degree of non-equilibrium at the interface; α̂ is the accommodation
coefficient, Rg is the universal gas constant and Mw is the molecular weight of the
vapour.

Finally, global conservation of mass means that the rate of change of the bubble
mass is equal to

DE

∫
J ds, (11)

where D = ρ/ρ(V ) denotes the ratio of liquid density to vapour density and the integral
is over all appropriate parts of the bubble interface, parameterized by the arclength s.

2.1. Capillary-statics region

Away from the plates capillary effects dominate the flow. At leading order in C
equations (2) and (3) are simply px = py = 0 and the boundary condition (7) yields

−∆p = hxx(1 + h2
x)
−3/2, (12)

where ∆p is the unknown (constant) leading-order pressure drop across the bubble
interface. Integrating equation (12) for the interface profile yields the circular arc

h = 1− (∆p)−1
[
1− (1 + ∆p (x− R − S))2

]1/2
(13)
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satisfying h(R + S) = 1 and |hx| → ∞ as x → (R + S)−. This is exactly the two-
dimensional version of the isothermal capillary-statics region obtained by Bretherton
(1961).

2.2. Transition region

The solution in the capillary-statics region is dominated by capillary effects and fails
to describe the solution in the transition region near x = R(t), y = −1 in which viscous
effects become important. In order to determine the correct leading-order behaviour
in this region one must rescale the variables appropriately. Since the solution must
match with that in the capillary-statics region and capillary forces must be balanced
by viscous forces due to the relative motion of the transition region and the lower
plate one must rescale x − R with C1/3, y + 1 with C2/3, v with C1/3 and h with
C2/3. Thus new variables defined by x = R + C1/3x̂, y = −1 + C2/3ŷ, v = C1/3v̂ and

h = C2/3ĥ are introduced. Note that this choice of scale means that the transition
region will be thin, and so the governing equations will be of lubrication type. A
non-trivial leading-order balance can be retained in equations (6) and (9) only if
J = O(C−2/3) and K = O(C2/3) and so one writes J = C−2/3Ĵ and K = C2/3K̂ where
Ĵ and K̂ are both O(1) in the limit C → 0.

At leading order in C equations (1)–(4) yield the familiar lubrication equations

ux̂ + v̂ŷ = 0, (14)

uŷŷ = px̂, (15)

0 = pŷ, (16)

Tŷŷ = 0, (17)

while the boundary conditions at the bubble interface ŷ = ĥ(x̂, t) (5)–(9) yield

−EC−1Ĵ = uĥx̂ − v̂, (18)

Ĵ = −Tŷ, (19)

−p = ĥx̂x̂, (20)

uŷ = 0, (21)

K̂Ĵ = T , (22)

and the boundary conditions on the plate ŷ = 0 yield u = −U and v̂ = 0, where
U = U(t) = Rt > 0 is the velocity of the transition region, and T = T0. Note that
when U < 0 the retreating transition region ‘sweeps up’ the liquid (if any) on the
plate and the details of the flow in the transition region are unimportant.

If E = o(C) then the solution for the leading-order problem for the velocity,
pressure and interface profile is independent of mass-transfer effects, and so can be
solved in the usual way to obtain

3Uĥx̂ = (ĥ3ĥx̂x̂x̂)x̂. (23)

Evidently equation (23) has the uniform solution ĥ = ĥ∞ for all values of the constant

ĥ∞ and can be integrated once with respect to x̂ to obtain the appropriate version of
the well-known Landau–Levich equation for the interface profile,

ĥx̂x̂x̂ = 3U
(ĥ− ĥ∞)

ĥ3
. (24)

This equation was first obtained by Landau & Levich (1942) and is perhaps the best
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known of a large class of nonlinear third-order differential equations which arise
in the study of thin films with surface tension (see the review articles by Tuck &

Schwartz 1990 and Myers 1998 for further details). Writing x̂ = (3U)−1/3ĥ∞X and

ĥ = ĥ∞H , one obtains the canonical form of equation (24), namely

HXXX =
H − 1

H3
. (25)

No analytical solution has been obtained to this equation but, as Bretherton (1961)
described, it has the appropriate asymptotic solutions H ∼ 1 as X → −∞ and

H ∼ C0

X2

2
+ C1X + C2 (26)

as X → ∞, where C0, C1 and C2 are undetermined constants.† This latter solution
will only match with the solution in the capillary-statics region given by equation
(13) if S = 1 and ∆p = 1, i.e. only if the bubble interface in the capillary-statics
region is (at leading order) a semicircular ‘cap’ which fits exactly between the plates.

This matching procedure also determines that ĥ∞ = (3U)2/3C0 where the value of the
constant C0 = 0.6429 is easily calculated numerically, and so

ĥ∞ = cU2/3, (27)

where c = 1.337. See Park & Homsy (1984) and Wilson (1995) for details of the
matching procedure. In the special case U = 1 one recovers the familiar steady
transition region described by Landau & Levich (1942) and Bretherton (1961).

2.3. Thin-film region

When U > 0 the solution in the transition region produces a quiescent film of liquid
on the plate whose height depends on the speed with which the transition region
is moving as it is deposited according to equation (27). In the steady, isothermal
problem studied by Bretherton (1961) this film is of uniform thickness and so requires
no further attention. However, in the present problem the situation is significantly
more complicated. Since the motion is unsteady, the thin film will not now be deposited
with constant thickness. Furthermore, the superheating or subcooling of the plates
will cause the profile of the thin film to vary once it has been deposited and may
even cause the film to dry out locally at various places and times on a superheated
plate, possibly causing the thin film to break up into disconnected patches of liquid
as it dries. In order to determine the correct leading-order behaviour in this thin-film
region one must again rescale the variables appropriately. Since the solution must
match with that in the transition region one must rescale y+ 1 with C2/3, v with C2/3

and h with C2/3. Note, however, that there is now no reason to rescale x and that
as a consequence the scale for v differs from that used in the transition region. Thus
new variables defined by y = −1 + C2/3ȳ, v = C2/3v̄ and h = C2/3h̄ are introduced.
Note that the thin-film region is much longer than the transition region and so the
governing equations will again be of lubrication type.

At leading order in C equations (1)–(4) yield the simplified lubrication equations

ux + v̄ȳ = 0, (28)

uȳȳ = 0, (29)

† Duffy & Wilson (1997) describe in detail the exact solution of the equation HXXX = H−2

satisfied by the solutions of equation (25) in the limit |H | → ∞.
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0 = pȳ, (30)

Tȳȳ = 0, (31)

while the boundary conditions at the bubble interface ȳ = h̄(x, t) (5)–(9) yield

−EC−4/3Ĵ = h̄t + uh̄x − v̄, (32)

Ĵ = −Tȳ, (33)

p = 0, (34)

uȳ = 0, (35)

K̂Ĵ = T , (36)

and the boundary conditions on the plate ȳ = 0 yield u = v̄ = 0 and T = T0.
This problem can be solved immediately to yield u = v̄ = 0 (i.e. the film is quiescent

as expected) together with

T = T0

[
1− ȳ

K̂ + h̄

]
, Ĵ =

T0

K̂ + h̄
. (37)

If E = O(C4/3) then mass-transfer effects enter the equation for the interface profile
at leading order and so if one writes E = ÊC4/3 where Ê is O(1) in the limit C → 0,
then equation (32) yields

h̄t +
ÊT0

K̂ + h̄
= 0. (38)

Note that this choice of E is consistent with the restriction E = o(C) used to obtain
the solution in the transition region in § 2.2. Equation (38) is exactly the equation
describing the evolution of an evaporating or condensing liquid film of uniform
thickness on a superheated or subcooled plate first derived by Burelbach et al. (1988).

2.4. Global mass-conservation condition

Now that the leading-order problems have been obtained in all three regions, the next
step is to evaluate the leading-order version of the global mass-conservation condition
(11). In the capillary-statics region J = O(1) and s = O(1) and so the contribution to
the integral in (11) is O(1); in the transition region J = O(C−2/3) but s = O(C1/3) and
so the contribution is O(C−1/3); in the thin-film region J = O(C−2/3) and s = O(1)
and so the contribution is O(C−2/3). Hence the mass transfer is dominated by that in
the thin-film region and the leading-order version of (11) is simply

DE

∫
J dx, (39)

where the integral is over appropriate parts of the interval [0, R], specifically over
all [0, R] for condensation but only over those parts of [0, R] covered by liquid (i.e.
with h > 0) for evaporation. Since at leading order the rate of change of mass of
the bubble is simply equal to Rt = U, one obtains a non-trivial leading-order global
mass-conservation condition only if D = O(C−2/3) and so one writes D = D̂C−2/3

where D̂ is O(1) in the limit C → 0. Notice that since D � 1 this choice is consistent
with the one-sided model. Thus, using equation (37) the leading-order global mass-
conservation condition can be written as

U = D̂Ê

∫
T0

K̂ + h̄
dx. (40)



10 S. K. Wilson, S. H. Davis and S. G. Bankoff

2.5. Problem summary

In order to calculate the dynamics of the bubble expansion or contraction one has
to solve equation (38) for the profile of the liquid film in the thin-film region subject
to the boundary condition (27) at x = R(t); the solution for U(t) is then calculated
by solving the global mass-conservation condition (40). The remainder of this paper
is devoted to an analysis of this problem for different initial conditions defined on
x ∈ [0, L] at t = 0 where L = R(0) > 0.

For simplicity of presentation it is useful to introduce rescaled variables ȳ = cy∗,
h̄ = ch∗, K̂ = cK∗, ÊT0 = c2E∗K∗ and D̂ = c−1D∗. Dropping the asterisks immediately
for clarity, equation (38) for the profile of the thin film h = h(x, t) becomes

ht +
E

1 + αh
= 0, (41)

subject to the boundary condition

h = U2/3 (42)

at x = R(t) and the global mass-conservation condition

U(t) = DE

∫
dx

1 + αh(x, t)
, (43)

where α ≡ 1/K . The boundary condition (42) plays a central role as it determines the
thickness of the thin film as it is deposited in terms of the instantaneous speed of the
transition region. When α = 0 one recovers the special case in which the mass flux at
the interface is independent of h and in this case the solution for U(t) depends only
on the length of the regions covered by liquid and not the thickness of the film in
those regions.

Equation (41) can be immediately solved to yield

h(x, t) = −1

α
+

[(
1

α
+ h0(x)

)2

− 2E

α
(t− t0(x))

]1/2

, (44)

and so equation (43) yields

U(t) = DE

∫
[(1 + αh0(x))2 − 2αE(t− t0(x))]−1/2 dx. (45)

If x < L = R(0), then h0 = h0(x) is the initial profile of the thin film at t = t0 = 0,
while if x > L, then h0 denotes the thickness of the liquid film deposited at position
x at time t = t0(x) = R−1(x).

Note that when the plate is superheated, E > 0, then the liquid evaporates from
the thin film and the film dries out locally at position x at time t given by

t− t0(x) =
h0(x)

E

(
1 +

αh0(x)

2

)
. (46)

However, if the plate is subcooled, E < 0, then vapour condenses onto the thin film
and local dry-out never occurs.

3. Delay-equation formulation for a continuous film
There is, in general, no reason to expect that the liquid in the thin film will remain

as a single, continuous film as it dries (indeed, it will become apparent that typically
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it does not). However, it is informative to consider the solution in this special case
before analysing the more general situation. In this case write t = τ+T(τ) and denote
the position of the front of the film (where it is being deposited) by x = R(τ+T(τ))
and the back (where h = 0) by x = R(τ). The delay T = T(τ) represents the length
of time it takes for the liquid deposited at x = R(τ) at time t = τ to dry out, and
hence from equation (46) is given by

T(τ) =
1

2αE

[(
1 + αU(τ)2/3

)2 − 1
]
. (47)

By changing the variable of integration, equation (45) can be expressed in the form

U(τ+T(τ)) = DE

∫ τ+T(τ)

τ

U(τ̂) [1 + f(τ̂)− f(τ)]−1/2 dτ̂, (48)

where

f(τ) =
(
1 + αU(τ)2/3

)2
+ 2αEτ. (49)

Equation (48) is an integro-delay equation for U with a non-constant delay T(τ)
which depends on the solution according to equation (47). Unfortunately the general
solution to this equation is not available, even in the case α = 0 in which equation
(47) reduces to

T(τ) = E−1U(τ)2/3 (50)

and equation (48) takes the particularly simple form

U(τ+T(τ)) = DE [R(τ+T(τ))− R(τ)] . (51)

However, as described in the next section, useful progress can still be made with this
delay-equation formulation of the problem.

4. Constant-velocity solution
Equation (48) permits an exact, steady travelling-wave solution in which U and T

are constant. Substituting U = U0 (a constant) into equation (48) yields the single
non-trivial solution

U0 = D−3/2 (52)

and hence from equation (47)

T =T0 = E−1D−1

(
1 +

α

2D

)
(53)

and from equation (44)

h = h0 = −1

α
+

[(
1

α
+

1

D

)2

− 2E

α
(t− D3/2x)

]1/2

, (54)

valid between the back

x = R(t−T) = D−3/2(t−T) = D−3/2t− E−1D−5/2
(

1 +
α

2D

)
(55)

and the front x = R(t) = D−3/2t of the film. The profile of the film according to
equation (54) at t = 0 is shown in figure 2 for a range of values of α in the case
D = E = 1. In particular, figure 2 shows that all the profiles satisfy h(R(t), t) = D−1

at the front and have contact angle ED3/2 at the back.
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Figure 2. Thin-film profiles of the constant-velocity solutions given by equation (54) at t = 0 for
α = 0, 0.25, 0.5, . . . , 2 in the case D = E = 1. Note that all the profiles move to the right with the
same speed, U0 = D−3/2.

One can investigate the linear stability of this constant-velocity solution by writing
U = U0 + U1 and T = T0 +T1 and linearizing for small U1 and T1 to obtain the
first-order delay T1(τ) from equation (47),

T1(τ) =
2

3EU
1/3
0

(1 + αU
2/3
0 )U1(τ), (56)

and the equation for U1(τ) from equation (48),

U1(τ+T0) =
2D

3U
1/3
0

U1(τ) + DE

∫ τ+T0

τ

U1(τ̂) [1 + 2αE(τ̂− τ)]−1/2 dτ̂

−2αDE

3
U

2/3
0 (1 + αU

2/3
0 )

∫ τ+T0

τ

[U1(τ̂)−U1(τ)] [1 + 2αE(τ̂− τ)]−3/2 dτ̂. (57)

Equation (57) is a integro-delay equation for U1 with constant (known) delay T0

which has the exact exponential solution

U1(τ) = A exp(Eβτ), (58)

where A is an arbitrary constant and β satisfies a complicated nonlinear equation
involving D (but not E), which is not reproduced here for brevity. In the limit α→ 0
this equation simplifies to

β

D

[
exp

(
β

D

)
− 2D3/2

3

]
− exp

(
β

D

)
+ 1 = 0. (59)

Numerically calculated solutions for β as a function of α for a range of values of D in
figure 3 show that β > 0 for all α for all the values of D investigated, i.e. the uniform
velocity solution is unconditionally unstable. Specifically, the numerical calculations
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Figure 3. Numerically calculated solutions for the temporal growth rate β of the constant-velocity
solutions plotted as a function of α for D = 0.5, 1, 1.5, 2.

show that β is a positive, monotonically decreasing function of α which approaches
the solution of equation (59) in the limit α → 0 (and so, for example, in this limit
β = 0.004102 when D = 10−1, β = 0.779926 when D = 1 and β = 33.845134 when
D = 10) and satisfies β = O(α−1) in the limit α→∞.

5. Numerical solution
In general one has to resort to numerical techniques in order to solve equation (45).
The solution for U(t) at t = n∆t for n = 0, 1, 2, . . . (where ∆t > 0 is the constant

time step) is approximated by Un and the corresponding approximation to R(t), Rn,
is obtained from the Un by simple quadrature using the trapezoidal rule. Starting
from the known initial conditions at N = 0, the solution at each new timestep N + 1
is calculated explicitly in terms of the known solutions at timesteps 0, 1, 2, . . . , N as
follows. First, the new thin-film profile is calculated at each spatial grid-point Rn for
n = 0, 1, . . . , N using equation (44). Then, the integral in equation (45) is evaluated
using the trapezoidal rule over those sub-intervals of the interval [0, RN+1] in which
h > 0, resulting in a nonlinear equation for UN+1 which is solved numerically using
Newton’s method. This process is repeated until the solution is obtained over the
desired time interval. Particular care is required when the solution for U(t) has
discontinuities (as it has for the uniform initial profile discussed subsequently) and
in this case an extra timestep of zero length is included to capture the solution at
t = t+c (just after the discontinuity) as well as at t = t−c (just before the discontinuity).
In practice in order to increase the accuracy of the procedure the contribution to
the integral in equation (45) from the interval [0, L] due to the initial profile is
calculated analytically rather than numerically. This explicit numerical procedure
could be generalized to an implicit one, but this is not found to be necessary for the
present purposes.
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The entire procedure is implemented numerically using the MAPLE V computer
algebra package running on a SiliconGraphics INDIGO2 workstation in the Depart-
ment of Engineering Sciences and Applied Mathematics at Northwestern University.
Depending on the size of the timestep and the range of t required, the calculations
described subsequently take anything from a few seconds to a couple of hours of
CPU time to complete. The accuracy of the solution is then checked by repeating
the procedure with smaller timesteps until the solution has converged to the desired
accuracy. Depending on the size of L, the solutions depicted subsequently are typically
obtained with a timestep of between 0.1 and 0.01 and the solutions are converged to
better than 5%. The accuracy of the solution at the first few timesteps is verified by
comparison with the asymptotic solution in the limit t→ 0.

In a real boiling situation the ‘initial’ profile of the thin film would be determined
by the details of the bubble nucleation process, a subject beyond the scope of the
present work. In what follows the evolution of the thin film will be investigated
starting from two simple initial profiles defined on [0, L] with thickness H at x = L,
namely a uniform initial film h = H and a linear initial film h = Hx/L. In all the
numerical computations which follow H = 1 and D = 1.

6. Problem 1: both plates superheated
If both plates are superheated then E > 0 and the liquid in the thin films will

evaporate causing the bubble to expand, i.e. U(t) > 0.

6.1. Uniform initial film

For the uniform initial film the contribution to the integral in equation (45) from the
initial profile is given simply by

DEL
[
(1 + αH)2 − 2αEt

]−1/2
(60)

for t ∈ [0, tc] where from equation (46)

tc =
H

E

(
1 +

αH

2

)
, (61)

and the initial behaviour of U(t) is given by U = U0 +U1t+ O(t2) where

U0 =
DEL

1 + αH
> 0, U1 =

DEU0

1 + αU
2/3
0

+
αDE2L

(1 + αH)3
. (62)

Typical numerically calculated solutions for U(t) are shown in figure 4(a) for a
range of values of L in the case E = α = 1. Figure 4(a) clearly demonstrates that
the solutions for U(t) are typically not monotonic and shows the delay character of
the system evidenced by the ‘echoes’ in the solutions for U(t). The corresponding
thin-film profiles at several different times in the case L = 1 and L = 0.75 are shown
in figure 4(b) and figure 4(c) respectively. In particular, note that figure 4(c) shows
that in the case L = 0.75 the thin film becomes discontinuous at t = 1 and again at
t = 3, but is continuous at the other times shown, namely t = 0, 2, 4, 5.

As figure 4(a) shows, U initially increases until the disappearance of the initial film
and the consequent discontinuous drop of magnitude DEL in the mass flux to the
bubble at t = tc causes it to drop as well. Note that in the special case α = 0 this initial
increase is given by simply U = DEL exp (DEt) and the effect of increasing α from zero
is to reduce U from this value and to increase tc. Apart from the discontinuity at t = tc
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the solutions for U are otherwise continuous but not smooth. The ‘corners’ in the
graph of U(t) result from the local dry-out of film which causes the local mass flux to
drop discontinuously. For example, the thin film breaks at x = L before the initial film
dries out at t = tc if the thickness of the film deposited at x = L at t = 0 is less than H ,
i.e. if DEL < H3/2(1+αH). This condition is satisfied by all the solutions shown in fig-
ure 4 except that corresponding to L = 2 and the effect of this local dry-out can be seen
in the weak slope discontinuities which occur before t = tc in each of the other solu-
tions forU. The thin-film profiles in the case L = 0.75 shown in figure 4(c) confirm that
in this case the thin film does indeed dry out locally near x = L at t = 1 < tc = 3/2.

Perhaps the most striking feature of the solutions shown in figure 4(a) is that the
ultimate fate of the bubble depends critically on the details of the initial conditions,
specifically if L < Lc then U → 0 at t = tm (say), and so the expansion of the bubble
stops in a finite time, while if L > Lc then U → ∞ as t → ∞, and so the bubble
continues to expand for all time. Numerical determination of the exact value of Lc is
difficult because small errors in the solution at the early timesteps can have a dramatic
effect of the large-time behaviour of U(t) when L is near its critical value, but from the
results shown in figure 4(a) evidently Lc ∈ (0.91, 0.92) when E = α = 1. Numerically
calculated values of tm are plotted as a function of L in figure 5 for a range of values of
E and α. Figure 5 shows the expected vertical asymptotes in tm at L = Lc and indicates
that the effect of increasing α and E simultaneously (which corresponds to decreasing
the non-equilibrium parameter K) is to decrease tm for small L and to decrease Lc.

6.2. Linear initial film

For the linear initial film the contribution to the integral in equation (45) from the
initial profile is given by

DEL

αH
log

[
1 + αH +

[
(1 + αH)2 − 2αEt

]1/2
1 + (1 + 2αEt)1/2

]
, (63)

and the initial behaviour of U(t) is given by U = U0 +U1t+ O(t2) where

U0 =
DEL

αH
log(1 + αH) > 0,

U1 =
DEU0

1 + αU
2/3
0

− DE2L
[
1 + (1 + αH)2

]
2H(1 + αH)2

. (64)

Typical numerically calculated solutions for U(t) are shown in figure 6(a) for a
range of values of L in the case E = α = 1. The corresponding thin-film profiles at
several different times in the cases L = 2 and L = 1.6 are shown in figure 6(b) and
figure 6(c) respectively. Evidently in this case there are no discontinuities in U(t), but
all the other features of the solutions (including the existence of a critical value of L)
are qualitatively the same as for a uniform initial film.

7. Problem 2: both plates subcooled
If both plates are subcooled then E = −C < 0 and the vapour will condense onto

the thin films causing the bubble to contract, i.e. U(t) 6 0. This purely condensing
case is considerably easier to analyse than the purely evaporating case considered in
§ 6 for two reasons. First, because the vapour is condensing onto the thin film the
film always remains continuous (i.e. no dry patches form) and secondly, because the
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bubble is contracting the condensation only takes place onto the initial film and so
the integrand in equation (45) is known explicitly.

7.1. Uniform initial film

For the uniform initial film equation (45) can easily be solved exactly to yield

U = −DCL
g(t)

exp

[
−D
α

(g(t)− g(0))

]
, (65)
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Figure 4. (a) Numerically calculated solutions for U(t) for a uniform initial film in the case
E = α = 1 when both plates are superheated for L = 0.5, 0.75, 0.9, 0.91, 0.92, 0.93, 1, 2;
(b) the corresponding thin-film profiles at t = 0, 4, 8, 12, 16, 20 in the case L = 1 > Lc; and (c) the
corresponding thin film profiles at t = 0, 1, 2, 3, 4, 5 in the case L = 0.75 < Lc. Note that in (c) the
thin film is discontinuous at t = 1 and t = 3, but is continuous at the other times shown.
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where

g(t) =
[
(1 + αH)2 + 2αCt

]1/2
. (66)

In particular, the initial behaviour of U(t) is given by U = U0 +U1t+ O(t2) where

U0 = − DCL

1 + αH
< 0, U1 =

DC

(1 + αH)3

[
αCL− (1 + αH)2U0

]
. (67)

The solution for U(t) is plotted in figure 7(a) for different values of L in the case
C = α = 1. Typical thin-film profiles (which remain uniform) at several different
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Figure 6. (a) Numerically calculated solutions for U(t) for a linear initial film in the case E = α = 1
when both plates are superheated for L = 1, 1.5, 1.6, 1.7, 2, 3; (b) the corresponding thin-film
profiles at t = 0, 4, 8, 12, 16, 20 in the case L = 2 > Lc; and (c) the corresponding thin film profiles
at t = 0, 2, 4, 6, 8 in the case L = 1.6 < Lc.

times in the case L = 1 are shown in figure 7(b). Evidently, U is always negative and
increases monotonically from U0 at t = 0 to zero from below and the length of the
thin-film region approaches zero asymptotically in the limit t→∞.

7.2. Linear initial film

For the linear initial film equation (45) cannot be solved exactly, but can easily be
integrated numerically. The initial behaviour of U(t) is given by U = U0 +U1t+O(t2)
where

U0 = −DCL
αH

log(1 + αH) < 0,

U1 =
DC

2(1 + αH)2
[αCL(2 + αH)− 2(1 + αH)U0] . (68)

Numerically calculated solutions for U(t) are plotted in figure 8(a) for different values
of L in the case C = α = 1. Typical thin-film profiles at several different times in the
case L = 1 are shown in figure 8(b). Evidently the behaviour in this case is again
qualitatively similar to that in the case of a uniform initial film.

8. Problem 3: lower plate superheated and upper plate subcooled
If the lower plate is superheated and the upper plate is subcooled equally then both

evaporation and condensation occur and the bubble may either expand or contract.

8.1. Uniform initial film

For a uniform initial film on both plates the contribution to the integral in equation
(45) from the initial profile is given by

1
2
DEL

[
(1 + αH)2 − 2αEt

]−1/2 − 1
2
DEL

[
(1 + αH)2 + 2αEt

]−1/2
, (69)
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Figure 7. (a) Solutions for U(t) for a uniform initial film in the case C = α = 1 when both plates
are subcooled for L = 1, 2, 3; (b) the corresponding thin-film profiles at t = 0, 2, 4, . . . , 20 in the case
L = 1.

where the first term is only present for t ∈ [0, tc], and the initial behaviour of U(t) is
given by U = U0 +U1t+ O(t2) where U0 = 0 and

U1 =
αDE2L

(1 + αH)3
> 0. (70)

Typical numerically calculated solutions for U(t) are shown in figure 9(a) for a range
of values of L in the case E = α = 1. The corresponding thin-film profiles on both
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Figure 8. (a) Numerically calculated solutions for U(t) for a linear initial film in the case
C = α = 1 when both plates are subcooled for L = 1, 2, 3; (b) the corresponding thin-film
profiles at t = 0, 2, 4, . . . , 20 in the case L = 1.

plates at several different times in the case L = 1 are shown in figure 9(b) and figure
9(c) respectively.

Initially evaporation effects are dominant and the bubble expands (U > 0) until
t = tc when the disappearance of the initial film on the superheated plate causes a
discontinuous drop of magnitude DEL/2 in the mass flux to the bubble, and hence a
discontinuous drop in U as well. Thereafter, condensation effects are dominant and
the bubble contracts (U < 0). Eventually the remaining liquid on the superheated
plate will either have evaporated or have been swept up by the retreating transition



22 S. K. Wilson, S. H. Davis and S. G. Bankoff

L = 2

1.0

2

L = 1

L = 3

(a)

U (t)
t

(b)
1.2

1.0

0.8

0.4

0

h (x, t)

0.2 0.4 0.6 0.8 1.2
x

t = 1

t = 0

1

 0.5

0

–0.5

–1.0

3 4 5

0.6

0.2

1.41.0

t = 0.25

t = 0.5

t = 0.75

t = 1

t = 1.25

t = 1.25

t = 1.5

t = 0.25 t = 0.75
t = 0.5

Figure 9 (a, b). For caption see facing page.

region. Thereafter, only condensation occurs and so, as in the pure-condensation case
considered earlier, U approaches zero from below and the length of the thin-film
region approaches zero asymptotically in the limit t→∞.

8.2. Linear initial film

For a linear initial film on both plates the initial behaviour of U(t) is given by
U = U0 +U1t+ O(t2) where U0 = 0 and

U1 = − DE2L

2H(1 + αH)2
< 0. (71)
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Figure 9. (a) Numerically calculated solutions for U(t) for a uniform initial film in the case
E = α = 1 when the lower plate is superheated and the upper plate subcooled for L = 1, 2, 3;
and the corresponding thin-film profiles on (b) the lower plate at t = 0, 0.25, 0.5, . . . , 1.5 and
(c) the upper plate at t = 0, 0.5, 1, . . . , 5 in the case L = 1. Note that for clarity (b) and (c) use
different vertical scales and are plotted at different values of t.

Typical numerically calculated solutions for U(t) are shown in figure 10(a) for a range
of values of L in the case E = α = 1. The corresponding thin-film profiles on both
plates at several different times in the case L = 1 are shown in figure 10(b) and figure
10(c) respectively.

Unlike the uniform initial film case considered above, condensation effects are
always dominant in this case and hence the bubble always contracts. Initially, U
decreases from zero until all the liquid on the superheated plate has either evaporated
or been swept up by the retreating transition region. Thereafter, only condensation
occurs and so the qualitative behaviour is exactly the same as in the case of a uniform
initial film.

9. Conclusions
This paper investigated the mass-transfer-driven unsteady expansion and contrac-

tion of a long two-dimensional vapour bubble confined between superheated or
subcooled parallel plates. It was shown that in the asymptotic limit of strong surface
tension (small capillary number) the solution consists of two capillary-statics regions
(in which the bubble interface is semicircular at leading order) and two thin films
attached to the plates (which may dry out locally and may break up into discon-
nected patches of liquid), connected by appropriate transition regions. The nonlinear
coupling between the profiles of the thin films and the overall expansion or con-
traction of the bubble was investigated for three different combinations of thermal
boundary conditions and two simple initial thin-film profiles. When both plates are
superheated equally, then both thin films evaporate and the bubble always expands.
Depending on the details of the initial thin-film profiles, this expansion may either
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continue indefinitely or stop in a finite time. When both plates are subcooled equally,
then vapour condenses onto both thin films and the bubble always contracts. In
this case the length of the thin-film region always approaches zero asymptotically
in the limit t → ∞. When one plate is superheated and the other subcooled with
equal magnitude, then liquid evaporates from the thin film on the superheated plate
and vapour condenses onto the thin film on the subcooled plate. Depending on the
details of the initial thin-film profiles, either evaporation or condensation can dom-
inate initially, and so the bubble may either expand or contract; in either case the
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Figure 10. (a) Numerically calculated solutions for U(t) for a linear initial film in the case
E = α = 1 when the lower plate is superheated and the upper plate subcooled for L = 1, 2, 3; and
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liquid on the superheated plate will eventually either evaporate or be swept up by
the retreating transition region, and so ultimately only condensation occurs and the
bubble will thereafter contract and the length of the thin-film region approaches zero
asymptotically in the limit t→∞, just as in the pure-condensation case.

The present work could be extended in a number of interesting ways to include,
for example, situations in which the magnitude of the superheating or subcooling on
the two plates is not equal, the initial thin-film profiles are not the same on both
plates, the plate temperatures are non-uniform or the initial thin-film profiles are more
complicated than the two simple examples considered. It might also be of interest to
investigate axisymmetric versions of the present two-dimensional problem, however
we do not anticipate that these problems will exhibit any qualitatively new behaviour.

As discussed in the Introduction, the main motivation for this work is to develop
a simple model for the dynamics of a vapour bubble in nucleate boiling. Clearly, the
next step is to construct and analyse an improved axisymmetric model in which the
upper plate is removed and the bubble is allowed to expand and contract in a more
realistic way.

This work was performed while the first author (S.K.W.) was a Visiting Scholar in
the Department of Engineering Sciences and Applied Mathematics of Northwestern
University where he was partially supported under a United States Department
of Energy Grant in the Basic Energy Sciences. S.K.W. would particularly like to
acknowledge the warm hospitality and stimulating academic environment provided
by S.H.D. and S.G.B. during his stay at Northwestern University.
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